
Incorporation of Cryptography Mechanism in a
Smartphone File Sharing System Design

Nitesh Rijal

Department of Computer Science, Jawaharlal Nehru Technological University
Kakinada, Andra Pradesh, India

rijal.it@gmail.com

Abstract— Modern day technology has become very advanced.
Internet has become accessible to almost every corner of the
world. Electronic Mail, commonly known as “email”, has become
the primary mode of communication all over the world. Email
serves as an integral part of our everyday life. Be it work, or to
be in touch with distant family members, it has become the most
cheapest means of communication because of its nearly zero cost
in terms of money.

The aim of this project is to develop a smartphone app that is
able to encrypt any file to be used attachments using an email
app and also decrypt it at the receiver's end, so that middle man
cannot view them even if they tap the mail in the middle.

Keywords— Encryption, Decryption, Cryptography,
Smartphone, SMTP, E-mail, Spoofing, Phising

I. INTRODUCTION

Smartphones have become very easily accessible to a
common man. Gone are the days of Blackberry and business
class Nokia phones which were used by business tycoons. Be
it the revolution brought by Apple in terms of its classy
smartphones or Google’s Android mobile operating system, it
has lowered the bar and changed the concept that smartphones
are only for business people.

But every thing in this world has two aspects. With
innovation, there comes threat. The ability to communicate
on the go, may also have a price to pay. We can call them
Hackers, Email Spammers or Internet Frauders, they are
always a threat to our communication channel. There is no
assurance that the email you send to your colleague or family
member is reached to them without being read or altered by a
third party in between the communication line.

A. Need of Encryption of Email contents and attachments

Email Spoofing is one of the most common techniques
used by Internet Frauders or Phishers. Email Spoofing
basically means impersonating as someone else to send a
message to you, and modifying the email headers in such a
way that it may appear to be from a legitimate source to you.
Email spoofers generally change the “replyto” field in the
email header, so that when you reply back to their email,
instead of going back to your source email it goes to the
spoofer’s address in the “replyto” field. There are many
attempts made to reduce email spoofing, but none of them
provide us 100% positive results.

Encrypting a message and its content is the least one can
do before sending a confidential message to someone. Not
only email content, but the attachments that we send are more
valuable to us. Encryping the message is less important when
you send the most valuable asset in the attachments. There are
many encryption techniques that can be used in email
applications in desktop or web. But, when we use the same in
a smartphone, we have to consider its processing speed as
well as battery backup. Our aim is to achieve a winwin
condition between both decent encryption and decryption
standard and efficient processing and battery status.

B. Literature Review

 There has been various attempts in the past to make users
able to send Encrypted messages using email. There has not
been any improvement in the method and techniques used to
do so. Email clients attempt to encrypt the email contents, but
fail to encrypt the attachments. That can pose risk for users of
the system.

There has been lot of efforts using different algorithms for
encrypting data. The most common and readily available
algorithm now-a-days is Advanced Encryption Standard
(AES). It is also the most secure encryption standard known to
withstand any kind of brute-force attacks as impossible.

AES uses 128, 196 and 256 key lengths for encryption and
decryption of data. AES is the perfect combination of Security
and Power Efficiency. In mobile devices, we have limited
resources like RAM, Processing speed and Battery backup,
thus using AES is the best choice.

Fig. 1 Energy consumption data for various symmetric ciphers.

II. BACKGROUND

The project was developed in native Android. This helped
me to use the existing Android UI APIs for the interface and
fields validation. Besides the use of existing APIs, I had to use
third-party libraries (in my case, my internship provider's) to
accomplish major tasks like Encryption/Decryption and HTTP
Digest Authentication.

The product is targetted for minimum Android API
version 8 (i.e. Android v2.2) and above. It has been tested in
Android Virtual Device for the following versions:

• Froyo (Android v2.2)
• Gingerbread (Android v2.3.3)
• Icecream Sandwich (Android v4.0.3 & v4.1.2)
• Jellybean (Android v4.2)

The development process for an Android application[7] can
be depicted by the figure below:

Fig. 2 The Development Process of Android applications[7]

Α. Android Software Development Kit

 The Android SDK[7] provides the API libraries and
developer tools necessary to build, test, and debug apps for
Android. The Android software development kit (SDK)
includes a comprehensive set of development tools. These
include a debugger, libraries, a handset emulator based on
QEMU, documentation, sample code, and tutorials. Currently
supported development platforms include computers running
Linux (any modern desktop Linux distribution), Mac OS X
10.5.8 or later, Windows XP or later.

The officially supported integrated development
environment (IDE) is Eclipse using the Android Development
Tools (ADT) Plugin, though IntelliJ IDEA IDE (all editions)
fully supports Android development out of the box, and
NetBeans IDE also supports Android development via a
plugin. Additionally, developers may use any text editor to
edit Java and XML files, then use command line tools (Java
Development Kit and Apache Ant are required) to create,
build and debug Android applications as well as control
attached Android devices (e.g., triggering a reboot, installing
software package(s) remotely).

Enhancements to Android's SDK go hand in hand with the
overall Android platform development. The SDK also
supports older versions of the Android platform in case
developers wish to target their applications at older devices.
Development tools are downloadable components, so after
one has downloaded the latest version and platform, older
platforms and tools can also be downloaded for compatibility
testing.

Android applications are packaged in .apk format and
stored under /data/app folder on the Android OS (the folder is
accessible only to the root user for security reasons). APK
package contains .dex files (compiled byte code files called
Dalvik executables), resource files, etc.

B. Loment Cryptography Library

The Loment Cryptography Library is a Java Library (JAR)
that comprises of all the cryptography methods used for
encryption and decryption works of Loment apps. The library
is itself a patented library which has its base upon the open
source Bouncy Castle[9] library used in Java.

The Loment Cryptography Library has been provided to me
by Loment Inc. with just its implementation methods exposed.
The code for the library has been level 3 obfuscated hence
only its implementation can be seen, not the code. There are 2
main classes that I have used to implement the encryption and
decryption methods in the app.

 1) EncoderDecoder Class: This class gives the methods
Encode and Decode. The Encode method is responsible for
generating the encoding string from the password provided by
the user, that will be passed to the next method. The Decode

method does the opposite, it takes input from decryption
method.

The implementation is:
String EncoderDecoder.encode(byte[] arg0)
byte[] EncoderDecoder.decode(String arg0)

 2) Crypter Class: The Crypter class does the actual
encryption and decryption. It provides 2 methods namely
encryptNew and decryptNew. These methods are responsible
for encrypting and decrypting stream data when provided with
the input from the encode and decode methods.

The implementation is:
Crypter.encryptNew(Key arg0, byte[] arg1)
Crypter.decryptNew(Key arg0, byte[] arg1, boolean arg2)

C. Loment Sthithi APIs

 The Loment Sthithi APIs are the gateway to their API server
calls. The APIs gives the developers the access to lot of
functions that are needed in any Loment application. Loment
Inc. uses a common Loment ID for all of their apps. Hence,
when a user is registered for any one of Loment apps, he can
use other products using the same Loment ID. The request url
for all Loment API calls is https://api-sthithi.loment.net/
which is password protected and uses HTTP Digest for its
access. It is accessible to only the developers or any other
client with proper USERNAME and KEY.

 The major API group include:
• Register User
• Authenticate User
• Subscription Manager
• Payment Manager
• User Information
• Device Information

 1) DigestAuthHandler Class: The HTTP Digest
Authentication system works on two passes. In the first pass
the client sends the request to the server with username and
password encorporated in it. The server responds to the client
with a challenge along with response code 401 (unauthorized).
The challenge contains a realm, nonce, cnonce and qop. In the
second pass, the client now encorporates all the fields as
presented by server and re-sends the request.

Fig.3 Pass 1 of HTTP Digest Authentication

Fig. 4 Pass 2 of HTTP Digest Authentication

 2) DataConnection Class: The DataConnection class is
reponsible for handling user requests. The user can request by
using 2 methods namely GET and POST. The GET method
requests data from a specified resource while the POST
method submits data to be processed to a specified resource.

The DataConnection class exposes 2 main method calls
namely sendGetRequest and sendPostRequest.

The implementation is:
String sendGetRequest(String request_url, String data)
String sendPostRequest(String request_url, byte[] data)

The response of DataConnection class is a JSON String
which contains the responseCode, responseMessage and other
fields that has been requested during the request.

3) Core API methods used: Though there are a number of
methods that can be accessed though the Sthithi APIs, it is not
necessary that every product uses the methods. I had used the
following methods during my project implementation.

• User_add
This method allows us to register a new user to
Loment Inc. Once registered, users can use this
account to use any of Loment products.
URI: /user/register/
TYPE: Post Data
PARAMETERS: none

• User_authenticate
This method allows us to authenticate the login credentials.

It handles the process of hashing the password in the server
side and does the authentication.

URI: /user/:username/authenticate/
TYPE: Post Data
PARAMETERS: <:username>

• User_account
This method allows us to get or update the user

information. It also allows us to change out Loment
password.

URI: /user/:username/account
TYPE: Get Data
PARAMETERS: <:username>

III. IMPLEMENTATION

A. Android Activity Lifecycle[6]

 The Android application contains a series of Activities.
Activities in the system are managed as an activity stack.
When a new activity is started, it is placed on the top of the
stack and becomes the running activity -- the previous activity
always remains below it in the stack, and will not come to the
foreground again until the new activity exits.

 An activity has essentially four states:

• If an activity in the foreground of the screen (at the top of
the stack), it is active or running.

• If an activity has lost focus but is still visible (that is, a
new non-full-sized or transparent activity has focus on
top of your activity), it is paused. A paused activity is
completely alive (it maintains all state and member
information and remains attached to the window
manager), but can be killed by the system in extreme low
memory situations.

• If an activity is completely obscured by another activity,
it is stopped. It still retains all state and member
information, however, it is no longer visible to the user so
its window is hidden and it will often be killed by the
system when memory is needed elsewhere.

• If an activity is paused or stopped, the system can drop
the activity from memory by either asking it to finish, or
simply killing its process. When it is displayed again to
the user, it must be completely restarted and restored to
its previous state.

There are three key loops within an activity:

• The entire lifetime of an activity happens between the
first call to onCreate(Bundle) through to a single final
call to onDestroy(). An activity will do all setup of
"global" state in onCreate(), and release all remaining
resources in onDestroy().

• The visible lifetime of an activity happens between a call
to onStart() until a corresponding call to onStop().
During this time the user can see the activity on-screen,
though it may not be in the foreground and interacting
with the user. Between these two methods you can
maintain resources that are needed to show the activity to
the user.

• The foreground lifetime of an activity happens between
a call to onResume() until a corresponding call to
onPause(). During this time the activity is in front of all
other activities and interacting with the user. An activity
can frequently go between the resumed and paused states.

Fig. 5 Android activity lifecycle

The implementation is:

public class Activity extends ApplicationContext {

 protected void onCreate(Bundle savedInstanceState);

 protected void onStart();

 protected void onRestart();

 protected void onResume();

 protected void onPause();

 protected void onStop();

 protected void onDestroy();

 }

TABLE I
DESCRIPTION OF ACTIVITY STATES

Method Description Next Call
onCreate() called when the activity is first

created.
onStart()

onRestart() called after your activity has been
stopped, prior to it being started
again.

onStart()

onStart() called when the activity is
becoming visible to the user.

onResume()/
onStop()

onResume() called when the activity will start
interacting with the user.

onPause()

onPause() called when the system is about to
start resuming a previous activity.

onResume()/
onStop()

onStop() called when the activity is no
longer visible to the user, because
another activity has been resumed
and is covering this one.

onRestart()/
onDestroy()

OnDestroy() the final call before the activity is
destroyed.

nothing

B. HTTP Digest Authentication

The Digest mechanism[5] allows a client to authenticate
itself by presenting credentials consisting of an MD5 digest,
transmitted in a request message. It is based on the principle
that the client and server are in possession of a shared secret, a
password string. The advantage of this method is that the
client password is only used in calculating the digest, so it
remains safe from network exposure.

The Digest mechanism is a challenge/response protocol in
which the client presents its credentials in response to a
challenge from the server, which consists of an opaque data
string called a "nonce". This nonce serves as additional input
to the MD5 function, and allows the server to influence the
digest value in a way not controlled by the client.

In order to authenticate the client, the server simply
compares the digest value received from the client with the
value it has computed internally. If the values match, the
client must be in possession of the same nonce and password
as the server, so the client is authenticated. The same
technique is used in the mutual authentication scenario, where
the server authenticates itself to the client by presenting a
digest as credentials in response to a challenge from the client.
In this case also the challenge consists of a client-produced
nonce to be used as input to the digest function, allowing the
client to influence the digest value in a way not controlled by
the server.

1) Header Entry Elements:

• “Challenge” Element
• "ClientAuth" Element
• "NextChallenge" Element
• "InitChallenge" Element

The pictorial representation of working mechanism of HTTP
Digest Authentication system is shown in Fig. 3 and Fig. 4.

C. Cryptography Library

Loment Crytography Library is a patented library[10] which
is patented under US 20120250594 A1.

The cryptography library uses a series of steps to encrypt
and decrypt any string. It used AES-256 along with Salt and
IV with 5 block padding size for its purposes. The actual
mechanism of generating the Salt, IV and the Message Key
from the user provided password is a secret because it is a
commercial product.

1) Steps in Encryption: Each round of the encryption process
requires a series of steps to alter the state array. These steps
involve four types of operations called:

i. SubBytes
This operation is a simple substitution that converts every

byte into a different value. AES defines a table of 256 values
for the substitution. We work through the 16 bytes of the state
array, use each byte as an index into the 256-byte substitution
table, and replace the byte with the value from the substitution

table. Because all possible 256 byte values are present in the
table, we end up with a totally new result in the state array,
which can be restored to its original contents using an inverse
substitution table. The contents of the substitution table are
not arbitrary; the entries are computed using a mathematical
formula but most implementations will simply have the
substitution table stored in memory as part of the design.

Fig. 6 AES SubBytes Operation

The implementation is:
public byte[][] subBytes(byte[][] state)
{

 for (int i=0;i<4;i++)

 {

 for (int j=0;j<4;j++)

 {

 int row = getFirstFourBits(state[i][j]);

 int column = getSecondFourBit(state[i][j]);

 state[i][j] = sBoxSubstitution(row,column);

 }

 }
return state;

}
ii. ShiftRows

The ShiftRows step is performed on the rows of the state
matrix. It cyclically shifts the bytes in each row by a certain
offset. The first row remains unchanged. Each byte of the
second row is shifted one position to the left. Similarly, the
third and fourth rows are shifted by two positions and three
positions respectively.

 The importance of this step is to make columns not linear
independent If so, AES becomes four independent block
ciphers.

Fig.7 AES ShiftRows Operation

The implementation is:
shiftRows(byte state[][])

{

 for(int i=0;i<4;i++)

 {

 cyclicLeftShift(i);

 }

}

iii. MixColumns
This operation is the most difficult, both to explain and

perform. Each column of the state array is processed
separately to produce a new column. The new column
replaces the old one. The processing involves a matrix
multiplication.

It takes each column of the state array and replaces it with a
new column computed by the matrix multiplication.

Fig. 8 AES MixColumns Operation

The implementation is:
public byte[][] mixColumns(byte[][] state)

{

 for (int c=0;c<4;c++)

 {

 state [c]=matrixMultiplication(state[c], polynomial);

 }

return state;

}

iv. XorRoundKey

After the MixColumns operation, the XorRoundKey is very
simple indeed and hardly needs its own name. This operation
simply takes the existing state array, XORs the value of the
appropriate round key, and replaces the state array with the
result. It is done once before the rounds start and then once
per round, using each of the round keys in turn.

Fig. 10 AES AddRoundKeys Operation

The implementation is:
public byte[][] addRoundKey(byte[][] state,byte[][]

roundkey)
{
 for (int i=0;i<4;i++)
 {
 for (int j=0;j<4;j++)

 {
 state [i][j]=doExclusiveOR(state[i][j],
 roundkey[i][j]);
 }

}
return state;

}
2) Steps in Decryption: Decryption involves reversing all

the steps taken in encryption using inverse functions:
• InvSubBytes
• InvShiftRows
• InvMixColumns

XorRoundKey doesn't need an inverse function because
XORing twice takes you back to the original value.
InvSubBytes works the same way as SubBytes but uses a
different table that returns the original value. InvShiftRows
involves rotating left instead of right and InvMixColumns
uses a different constant matrix to multiply the columns.

3) Challenges in File Encryption and Decryption: File
encryption and decryption is very much different than
encryption and decryption of string. We need to consider the
file padding (null bytes) to be added into the block while
encryption and needs to be removed while decryption.

Files can be converted to File Input Stream for reading and
writing. While encryption, we read the file block by block.
We used the block size of 2736 bytes for our purpose. While
writing the encrypted file, in the last pass, we add padding to
complete the block size.

Now, when the encrypted file is shared, we cannot
determine, how much padding was added in the file.
Moreover, removing all the trailing padding also creates
problems because there already may be padding in the original
file itself. Hence, the last block coulnot be written reliably.

As an alternative solution, we used the file size as a
measure to read and write. We would pass the actual file size
in each file's header while encryption and write only that
number of bytes while decryption. This way we overcame the
padding problem.

IV. CONCLUSION

The need of file encryption is into its greatest level because
sharing data between 2 parties always needs privacy and
security. Using email as the medium of communication on one
hand gives us the power to communicate instantly on the go
while on the other hand increases the risk of our message
being sniffed and tampered while its transmission though
different gateways.

Developing an android app that could encrypt and share a
file while it could also decrypt and open the file for viewing
using any email client was the main motive of this app.
Besides this, it also works a stand-alone app for general file
encrypting decrypting process or for hiding a file by
encrypting its content using a custom extension.

ACKNOWLEDGMENT

I express my deep gratitude and regards to Dr. M. Venkata
Chalapathi (CEO Loment Inc) for giving me the opportunity
to complete my internship and his guidance, help,

encouragement throughout the course of this thesis work at
Loment Inc, Hyderabad.

I would like to express my thanks with gratitude to Dr.
J.V.R Murthy, Internal Guide and Professor, Department of
Computer Science & Engineering for his encouragement and
valuable guidance in bringing shape to this dissertation.

I am grateful to Smt. L. Sumalatha, Head of the
Department, Department of Computer Science & Engineering,
University College of Engineering, JNTU Kakinada for her
encouragement and motivation.

I am thankful to all the Professors and Faculty Members in
the department for their teachings and academic support and
thanks to Technical Staff and Non-teaching staff in the
department for their support.

Last, but not the least, I would like to express my heartfelt
thanks to Mr. Bharath Kishore Aluri, Mr. Madhur Vyas and
all other senior members at Loment Inc. for their support and
help during the completion of the project.

REFERENCES

[1] Lee, H., Shin, DH., and Jung, HC., Implementations of Block Cipher
SEED on Smartphone Operating Systems, 2The Fifth International
Conference on Emerging Security Information, Systems and
Technologies, 2011.

[2] L. Shurui, L. Jie, Z. Ru, and W. Cong, "A Modified AES Algorithm
for the Platform of Smartphone", 2010 International Conference on
Computational Aspects of Social Networks, 2010, pp. 749-752.

[3] A. Visoiu and S. Trif, "Open Source Security Components for Mobile
Applications" Open Source Science Journal, vol. 2, no. 2, 2010. pp.
155-166.

[4] National Institute of Standards and Technology, Specification for the
ADVANCED ENCRYPTION STANDARD, 2001, [Online]. Available:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[5] The Whitemesa specifications for SOAP Extensions: Basic and Digest
Authtication. [Online] Available: www.whitemesa.com/soapauth.html

[6] Android Activity Lifecycle Reference. [Online]. Available:
http://developer.android.com/reference/android/app/Activity.html

[7] Android Development Workflow and Software Development. [Online].
Available: http://developer.android.com/tools/workflow/index.html

[8] Miranda, P., Siekkinen, M., TLS and Energy Consumption On a
Mobile Device: A Measurement Study, IEEE, 2011.

[9] The Legion of Bouncy Castle. [Online] Available:
http://www.bouncycastle.org/java.html

[10] Loment Encryption Library Patent Claim. [Online] Available:
http://www.google.com/patents/US20120250594?
dq=inassignee:loment+inassignee:inc

